Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.758
Filtrar
1.
Sci Rep ; 14(1): 7794, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565625

RESUMO

In this study, a commercial dental resin was reinforced by SiO2 nanoparticles (NPs) with different concentrations to enhance its mechanical functionality. The material characterization and finite element analysis (FEA) have been performed to evaluate the mechanical properties. Wedge indentation and 3-point bending tests were conducted to assess the mechanical behavior of the prepared nanocomposites. The results revealed that the optimal content of NPs was achieved at 1% SiO2, resulting in a 35% increase in the indentation reaction force. Therefore, the sample containing 1% SiO2 NPs was considered for further tests. The morphology of selected sample was examined using field emission scanning electron microscopy (FE-SEM), revealing the homogeneous dispersion of SiO2 NPs with minimal agglomeration. X-ray diffraction (XRD) was employed to investigate the crystalline structure of the selected sample, indicating no change in the dental resin state upon adding SiO2 NPs. In the second part of the study, a novel approach called iterative FEA, supported by the experiment wedge indentation test, was used to determine the mechanical properties of the 1% SiO2-dental resin. Subsequently, the accurately determined material properties were assigned to a dental crown model to virtually investigate its behavior under oblique loading. The virtual test results demonstrated that most microcracks initiated from the top of the crown and extended through its thickness.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Resinas Compostas/química , Análise de Elementos Finitos , Nanopartículas/química , Fenômenos Mecânicos , Teste de Materiais
2.
PLoS One ; 19(4): e0302009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38620042

RESUMO

Phytoliths of biogenic silica play a vital role in the silicon biogeochemical cycle and occlude a fraction of organic carbon. The location, chemical speciation, and quantification of this carbon within phytoliths have remained elusive due to limited direct experimental evidence. In this work, phytoliths (bilobate morphotype) from the sugarcane stalk epidermis are sectioned with a focused ion beam to produce lamellas (≈10 × 10 µm2 size, <500 nm thickness) and probed by synchrotron scanning transmission X-ray microspectroscopy (≈100-200 nm pixel size; energies near the silicon and carbon K-absorption edges). Analysis of the spectral image stacks reveals the complementarity of the silica and carbon spatial distributions, with carbon found at the borders of the lamellas, in islands within the silica, and dispersed in extended regions that can be described as a mixed silica-carbonaceous matrix. Carbon spectra are assigned mainly to lignin-like compounds as well as to proteins. Carbon contents of 3-14 wt.% are estimated from the spectral maps of four distinct phytolith lamellas. The results provide unprecedented spatial and chemical information on the carbon in phytoliths obtained without interference from wet-chemical digestion.


Assuntos
Dióxido de Silício , Silício , Dióxido de Silício/química , Raios X , Carbono/análise , Síncrotrons
3.
Lasers Med Sci ; 39(1): 91, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491201

RESUMO

Investigating combined treatment methodologies is crucial for addressing the complex nature of cancer. As an emerging strategy, nano-biotechnology encourages the design of unique nanocarriers possessing simultaneous therapeutic application properties. This study aims to explore the combined effects of photodynamic and anticancer treatments using a multifunctional nanocarrier system co-administering the photosensitizer IR780 and the anticancer agent curcumin (Cur) on lung cancer cells. Nanocarriers were prepared by encapsulation IR780 and Cur inside polyethylene glycol-capped mesoporous silica nanoparticles (Cur&IR780@MSN). Various concentrations of nanocarriers were evaluated on A549 cells following 5 min NIR laser light (continuous wave, 785 nm, 500 mW/cm2) irradiation. The internalization of nanocarriers was observed through the fluorescence of Cur. Changes in cell viability were determined using the MTT assay and AO/PI staining. A scratch assay analysis was also performed to examine the impact of combined treatments on cell migration. Characterization of the nanocarriers revealed adequate hydrophobic drug loading, temperature-inhibited feature, enhanced reactive oxygen species generation, a pH-dependent curcumin release profile, and high biocompatibility. Cur&IR780@MSN, which enabled the observation of synergistic treatment efficacy, successfully reduced cell viability by up to 78%. In contrast, monotherapies with curcumin-loaded nanocarriers (Cur@MSN) and IR780-loaded nanocarriers (IR780@MSN) resulted in a 38% and 56% decrease in cell viability, respectively. The constructed Cur&IR780@MSN nanocarrier has demonstrated remarkable performance in the application of combination therapies for lung cancer cells. These nanocarriers have the potential to inspire future studies in tumor treatment methods.


Assuntos
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Dióxido de Silício/química , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química
4.
Int J Nanomedicine ; 19: 2199-2225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465205

RESUMO

Solid oral dosage forms are mostly preferred in pharmaceutical formulation development due to patient convenience, ease of product handling, high throughput, low manufacturing costs, with good physical and chemical stability. However, 70% of drug candidates have poor water solubility leading to compromised bioavailability. This phenomenon occurs because drug molecules are often absorbed after dissolving in gastrointestinal fluid. To address this limitation, delivery systems designed to improve the pharmacokinetics of drug molecules are needed to allow controlled release and target-specific delivery. Among various strategies, amorphous formulations show significantly high potential, particularly for molecules with solubility-limited dissolution rates. The ease of drug molecules to amorphized is known as their glass-forming ability (GFA). Specifically, drug molecules categorized into class III based on the Taylor classification have a low recrystallization tendency and high GFA after cooling, with substantial "glass stability" when heated. In the last decades, the application of mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS) has gained significant attention in various investigations and the pharmaceutical industry. This is attributed to the unique physicochemical properties of MSNs, including high loading capacity, recrystallization inhibition, excellent biocompatibility, and easy functionalization. Therefore, this study aimed to discuss the current state of good glass former drug loaded mesoporous silica and shows its impact on the pharmaceutical properties including dissolution and physical stability, along with in vivo study. The results show the importance of determining whether mesoporous structures are needed in amorphous formulations to improve the pharmaceutical properties of drug with a favorable GFA.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Preparações Farmacêuticas/química , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos , Solubilidade , Liberação Controlada de Fármacos , Nanopartículas/química , Porosidade , Portadores de Fármacos/química
5.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474598

RESUMO

Single-particle inductively coupled plasma mass spectrometry (spICP-MS) has been used for particle size measurement of diverse types of individual nanoparticles and micrometer-sized carbon-based particles such as microplastics. However, its applicability to the measurement of micrometer-sized non-carbon-based particles such as silica (SiO2) particles is unclear. In this study, the applicability of spICP-MS to particle size measurement of non-porous/mesoporous SiO2 microspheres with a nominal diameter of 5.0 µm or smaller was investigated. Particle sizes of these microspheres were measured using both spICP-MS based on a conventional calibration approach using an ion standard solution and scanning electron microscopy as a reference technique, and the results were compared. The particle size distributions obtained using both techniques were in agreement within analytical uncertainty. The applicability of this technique to the detection of metal-containing protein-binding mesoporous SiO2 microspheres was also investigated. Bound iron (Fe)-containing proteins (i.e., lactoferrin and transferrin) of mesoporous SiO2 microspheres were detected using Fe as a presence marker for the proteins. Thus, spICP-MS is applicable to the particle size measurement of large-sized and non-porous/mesoporous SiO2 microspheres. It has considerable potential for element-based detection and qualification of bound proteins of mesoporous SiO2 microspheres in a variety of applications.


Assuntos
Plásticos , Dióxido de Silício , Dióxido de Silício/química , Tamanho da Partícula , Microesferas , Espectrometria de Massas/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124083, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428214

RESUMO

Food sources are susceptible to contamination with ochratoxin A (OTA), which is a serious threat to human health. Thus, the construction of novel, simple sensing platforms for OTA monitoring is of utmost need. Manganese-doped lead halide perovskite quantum dots encapsulated with mesoporous SiO2 (Mn-CsPbBr3 QDs@SiO2) were prepared here and used as a ratiometric fluorescent probe for OTA. Mn-CsPbBr3 QDs, synthesized at room temperature, exhibit dual emission with maximum wavelengths of 440 and 570 nm and, when embedded in the SiO2 layer, produce a stable and robust photoluminescence signal. By adding OTA to the probe, emission at 440 nm increases while emission at 570 nm decreases, so a ratiometric response is obtained. Experimental variables affecting the probe signal were studied and optimized and the mechanism of sensing was discussed. This ratiometric sensor demonstrated excellent selectivity and low detection limit (4.1 ng/ml) as well as a wide linear range from 5.0 to 250 ng/ml for OTA. A simple portable smartphone-based device was also constructed and applied for the fluorescence assay. With different OTA concentrations, the multicolor transition from pink to blue under a UV lamp led to simple visual and smartphone-assisted sensing of OTA by using a color analyzing application. Satisfactory recoveries in black tea, coffee, moldy fig and flour samples confirmed the reliability of the assay. The accuracy of the probe was proved by comparison of the results with high-performance liquid chromatography (HPLC).


Assuntos
Compostos de Cálcio , Ocratoxinas , Óxidos , Pontos Quânticos , Titânio , Humanos , Pontos Quânticos/química , Dióxido de Silício/química , Smartphone , Reprodutibilidade dos Testes , Corantes Fluorescentes/química , Limite de Detecção
7.
ACS Appl Mater Interfaces ; 16(11): 13534-13542, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447594

RESUMO

Prosthetic materials are a source of bacterial infections, with significant morbidity and mortality. Utilizing the bionic "Lotus effect," we generated superhydrophobic vascular prostheses by nanocoating and investigated their resistance to bacterial colonization. Nanoparticles were generated from silicon dioxide (SiO2), and coated vascular prostheses developed a nanoscale roughness with superhydrophobic characteristics. Coated grafts and untreated controls were incubated with different bacterial solutions including heparinized blood under mechanical stress and during artificial perfusion and were analyzed. Bioviability- and toxicity analyses of SiO2 nanoparticles were performed. Diameters of SiO2 nanoparticles ranged between 20 and 180 nm. Coated prostheses showed a water contact angle of > 150° (mean 154 ± 3°) and a mean water roll-off angle of 9° ± 2°. Toxicity and viability experiments demonstrated no toxic effects of SiO2 nanoparticles on human induced pluripotent stem cell-derived cardiomyocytes endothelial cells, fibroblasts, and HEK239T cells. After artificial perfusion with a bacterial solution (Luciferase+ Escherichia coli), bioluminescence imaging measurements showed a significant reduction of bacterial colonization of superhydrophobic material-coated prostheses compared to that of untreated controls. At the final measurement (t = 60 min), a 97% reduction of bacterial colonization was observed with superhydrophobic material-coated prostheses. Superhydrophobic vascular prostheses tremendously reduced bacterial growth. During artificial perfusion, the protective superhydrophobic effects of the vascular grafts could be confirmed using bioluminescence imaging.


Assuntos
Células-Tronco Pluripotentes Induzidas , Dióxido de Silício , Humanos , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Propriedades de Superfície , Biônica , Células Endoteliais , Interações Hidrofóbicas e Hidrofílicas , Água/química , Escherichia coli
8.
ACS Appl Bio Mater ; 7(4): 2511-2518, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512069

RESUMO

High-fidelity patterning of DNA origami nanostructures on various interfaces holds great potential for nanoelectronics and nanophotonics. However, distortion of a DNA origami often occurs due to the strong interface interactions, e.g., on two-dimensional (2D) materials. In this study, we discovered that the adsorption of silica precursors in rapid silicification can prevent the distortion caused by graphene and generates a high shape-fidelity DNA origami-silica composite on a graphene interface. We found that an incubation time of 1 min and silicification time of 16 h resulted in the formation of DNA origami-silica composites with the highest shape fidelity of 99%. By comparing the distortion of the DNA origami on the graphene interface with and without silicification, we observed that rapid silicification effectively preserved the integrity of the DNA origami. Statistical analysis of scanning electron microscopy data indicates that compared to bare DNA origami, the DNA origami-silica composite has an increased shape fidelity by more than two folds. Furthermore, molecular dynamics simulations revealed that rapid silicification effectively suppresses the distortion of the DNA origami through the interhelical insertion of silica precursors. Our strategy provides a simple yet effective solution to maintain the shape-fidelity DNA origami on interfaces that have strong interaction with DNA molecules, expanding the applicable interfaces for patterning 2D DNA origamis.


Assuntos
Grafite , Nanoestruturas , Microscopia de Força Atômica , Grafite/química , Nanoestruturas/química , DNA/química , Dióxido de Silício/química
9.
Int J Biol Macromol ; 265(Pt 1): 130856, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490393

RESUMO

Gastrointestinal cancers are one among the most frequently reported cancers where colorectal and gastric cancers ranks third leading cause of cancer related death worldwide. Phloroglucinol, a well-known therapeutic agent for cancer, where its usage has been limited due to its poor water solubility and bioavailability. Hence, our study aims to synthesize and characterize Hyaluronan grafted phloroglucinol loaded Mesoporous silica nanoparticles (MSN-PG-HA). Our nano-formulation hasn't shown any teratogenic effect on Zebrafish embryos, no hemolysis and toxic effect with normal fibroblast cells with a maximum concentration of 300 µg/mL. The cumulative drug release profile of MSN-PG-HA showed a maximum drug release of 96.9 % with 5 mM GSH under redox responsive drug release, which is crucial for targeting cancer cells. In addition, the MSN-PG-HA nanoparticles showed significant a cytotoxic effect against HCT-116, AGS and SW-620 with IC50 values of 86.5 µg/mL, 80.65 µg/mL and 109.255 µg/mL respectively. Also, the cellular uptake assay has shown an increased uptake of FITC-labeled-MSN-PG-HA by HA-receptor mediated endocytosis than FITC-labeled-MSN-PG without HA modification in CD44+ gastrointestinal cancer cell lines. The ability of MSN-PG-HA to target CD44+ cells was further exploited for its application in cancer stem cell research utilizing in silico analysis with various stem cell pathway related targets, in which PG showed higher binding affinity with Gli 1 and the simulation studies proving its effectiveness in disrupting the protein structure. Thus, the findings of our study with nano-formulation are safe and non-toxic to recommend for targeted drug delivery against gastrointestinal cancers as well as its affinity towards cancer stem cell pathway related proteins proving to be a significant formulation for cancer stem cell research.


Assuntos
Neoplasias Gastrointestinais , Nanopartículas , Animais , Ácido Hialurônico/química , Dióxido de Silício/química , Fluoresceína-5-Isotiocianato , Peixe-Zebra , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Porosidade
10.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542131

RESUMO

A chemo-drug such as cisplatin is effective for cancer treatment but remains non-specific, is susceptible to drug resistance, and induces several side effects on organ systems. Zeolitic imidazolate framework-8, a type of MOF, has gained attention, including as a drug delivery method for targeted cancer therapeutics. In this study, ZIF-8/Silica nanocomposite was synthesized using a one-pot hydrothermal technique using the Stober technique. We studied the effect of phyto-synthesized GPt and chemo-drug cisplatin CPt on ZIF-8/Silica for targeted efficacy of cancer therapy. The texture, morphology, and chemical environment of Pt on ZIF-8/Silica were analyzed using different characterization techniques such as XRD, FT-IR, BET, diffuse reflectance spectroscopy, SEM-EDX, TEM, zeta potential, and TGA analysis. The isothermal behavior of CPt and GPt adsorption was investigated using isotherm models like Langmuir, Freundlich, and Temkin isotherm. The adsorption kinetics indicating the adsorption efficiency of GPt and CPt are influenced by the concentration of Pt complex and the adsorption sites of ZIF-8/Silica. A high entrapment efficiency and loading capacity of GPt (86% and 4.3%) and CPt (91% and 4.5%) were evident on ZIF-8/Silica. The nanocomposite showed a pH-sensitive Pt release using a dialysis membrane technique. For instance, a high release of GPt (93%) was observed under pH = 6.6 in 72 h, while the release reduced to 50% at pH 7.4 in 72 h. The anti-cancer activity of nanoformulations was studied in vitro using MCF7 (breast cancer cells) and HFF-1 (human foreskin fibroblast) cells. The findings demonstrated that GPt is as effective as CPt; the EC50 value for MCF7 cells treated with ZIF-8/Silica/Cp/PEG was 94.86 µg/mL, whereas for ZIF-8/Silica/GPt/PEG it was 60.19 µg/mL.


Assuntos
Antineoplásicos , Nanocompostos , Neoplasias , Zeolitas , Humanos , Cisplatino/farmacologia , Platina , Zeolitas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Dióxido de Silício/química , Antineoplásicos/farmacologia , Imidazóis/farmacologia , Imidazóis/química , Neoplasias/tratamento farmacológico
11.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542189

RESUMO

The encapsulation of retinol within silica microparticles has emerged as a promising opportunity in the realm of cosmetic and pharmaceutical formulations, driven by the need to reinforce the photoprotection and oxidation stability of retinol. This work examines the process of encapsulating retinol into silica microparticles. The association efficiency, microparticle size, molecular structure, morphology, oxidation, and release profile, as well as biocompatibility and skin sensitization, were evaluated. Results showed that 0.03% of retinol and 9% of emulsifier leads to an association efficiency higher than 99% and a particle size with an average of 5.2 µm. FTIR results indicate that there is an association of retinol with the silica microparticles, and some may be on the surface. Microscopy indicates that when association happens, there is less aggregation of the particles. Oxidation occurs in two different phases, the first related to the retinol on the surface and the second to the associated retinol. In addition, a burst release of up to 3 h (30% free retinol, 17% associated retinol) was observed, as well as a sustained release of 44% of retinol up to 24 h. Encapsulation allowed an increase in the minimal skin cytotoxic concentrations of retinol from 0.04 µg/mL to 1.25 mg/mL without skin sensitization. Overall, retinol is protected when associated with silica microparticles, being safe to use in cosmetics and dermatology.


Assuntos
Retinoides , Saccharum , Preparações de Ação Retardada , Vitamina A , Dióxido de Silício/química , Tamanho da Partícula
12.
J Chromatogr A ; 1720: 464799, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458140

RESUMO

Chiral pillar[5]arene-based mesoporous silica, an emerging class of chiral structure, possesses excellent characteristics such as abundant chiral active sites, encapsulated cavity and excellent chiral modification, which make them a promising candidate as new chiral stationary phases (CSPs) in enantioseparation. In this study, two imidazole-containing (S)-1-(4-phenyl-1H-imidazol-2-yl)ethanamine and (S)-Histidinol were respectively modified to bromoethoxy pillar[5]arene-bonded silica to construct new chiral stationary phases (sPIE-BP5-Sil and sHol-BP5-Sil) for the separation and analysis of enantiomers. The separation conditions such as mobile phase composition, flow rate and temperature were optimized. Under optimal conditions, both sPIE-BP5-Sil and sHol-BP5-Sil showed good separation performance for different types of enantiomers. Interestingly, sPIE-BP5-Sil and sHol-BP5-Sil showed better enantioselectivity for chiral aromatic compounds and chiral aliphatic compounds, respectively. This enantioseparation result was closely related to the presence of additional aromatic rings and abundant hydroxyl groups in the side chains of the two chiral groups. In addition, the enantioseparation process was further studied by molecular docking simulation. Therefore, this work provided a new strategy for the preparation and application of imidazolyl-derived pillar[5]arene-based chiral stationary phases, which can be efficiently used for screening and separating enantiomers.


Assuntos
Dióxido de Silício , Cromatografia Líquida de Alta Pressão , Dióxido de Silício/química , Simulação de Acoplamento Molecular , Estereoisomerismo , Temperatura
13.
J Chromatogr A ; 1720: 464794, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484640

RESUMO

The distinctive morphology of dendritic mesoporous silica nanoparticles (DMSN) has recently attracted considerable attention in scientific community. However, synthesis of DMSN with well-defined structure and uniform size for ultrafast extraction of trace herbicide residues from environmental and food samples remains to be a compelling challenge. In this study, sulfhydryl functionalized dendritic mesoporous silica (SH-DMSN) was synthesized and the SH-DMSN showcases monodisperse microspheres with flower shape and precisely tailored and controllable pore sizes. This distinctive structural configuration accelerates mass transfer within the silica layer, resulting in heightened adsorption efficiencies. Furthermore, the particle sizes (455, 765, and 808) of the adsorbent can be meticulously fine-tuned by introducing distinct templates. Specifically, when the particle size is 765 nm, the optimized SH-DMSN exhibits a substantial specific surface area (691.32 m²/g), outstanding adsorption efficiencies (>90 %), remarkably swift adsorption and desorption kinetics (2 min and 3 min, respectively), and exceptional stability. The superior adsorption capabilities of this novel adsorbent, ranging from 481.65 to 1021.7 µg/g for organochlorine herbicides containing amide groups, can be attributed to the interplay of S-π interactions, halogen bonding, and electrostatic attraction interaction. These interactions involve the lone pair electrons of sulfhydryl and silanol groups with the π-electrons, halogen atoms and amide groups in herbicide molecules. This study not only offers a new perspective on advancing the practical utilization of dendritic mesoporous silica but also provides a pragmatic strategy for the separation and analysis of herbicides in diverse sample matrices.


Assuntos
Herbicidas , Nanosferas , Nanosferas/química , Dióxido de Silício/química , Halogênios , Porosidade
14.
J Chromatogr A ; 1720: 464811, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490143

RESUMO

A novel silica stationary phase was designed and prepared through thiol-epoxy click chemistry for supercritical fluid chromatography (SFC). The developed stationary phase was characterized by elemental analysis, Fourier transform infrared spectrometry and solid-state 13C/CP MAS NMR spectroscopy. In order to evaluate the chromatographic performance and retention mechanisms of the prepared column, a variety of alkaloids were used, including indoles, isoquinolines, pyrrolidines, piperidines, quinolizidines and organic amines. The stationary phase showed more symmetrical peak shapes and better performance for these compounds compared to the conventional SFC stationary phases. The investigations on the effects of pressure and temperature on retention provided information that the selectivity of the compounds can be improved by changing the density of the supercritical fluids. Moreover, it shows improved separation efficiency of three natural products with alkaloids as the main components at high sample loading. In conclusion, the developed stationary phase could offer flexible selectivity toward alkaloids and complex samples.


Assuntos
Alcaloides , Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Compostos de Sulfidrila , Temperatura , Aminas , Dióxido de Silício/química
15.
J Biomater Appl ; 38(9): 1000-1009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456269

RESUMO

Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.


Assuntos
Flavonas , Flavonoides , Neoplasias , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/química , Dióxido de Silício/química , Antioxidantes/química , Ferro , Porosidade
16.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512116

RESUMO

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Nanopartículas de Magnetita , Materiais Biocompatíveis/química , Dióxido de Silício/química , Óxido Ferroso-Férrico , Calefação , Cerâmica/farmacologia , Cerâmica/química
17.
Ecotoxicol Environ Saf ; 275: 116256, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554605

RESUMO

Silica nanoparticles (SiNPs) could induce adverse pulmonary effects, but the mechanism was not clear enough. Metabolomics is a sensitive and high-throughput approach that could investigate the intrinsic causes of adverse health effects caused by SiNPs. The current investigation represented the first in vivo metabolomics study examining the chronic pulmonary toxicity of SiNPs at a low dosage, mimicking real human exposure situation. The recovery process after the cessation of exposure was also taken into consideration. Fisher 344 rats were treated with either saline or SiNPs for 6 months. Half of the animals in each group received an additional six-month period for recovery. The findings indicated that chronic low-level exposure to SiNPs resulted in notable alterations in pulmonary metabolism of amino acids, lipids, carbohydrates, and nucleotides. SiNPs exerted an impact on various metabolites and metabolic pathways which are linked to oxidative stress, inflammation and tumorigenesis. These included but were not limited to L-carnitine, spermidine, taurine, xanthine, and glutathione metabolism. The metabolic alterations caused by SiNPs exhibited a degree of reversibility. However, the interference of SiNPs on two metabolic pathways related to tumorigenesis was observed to persist after a recovery period. The two metabolic pathways are glycerophospholipid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis. This study elucidated the metabolic alterations induced by chronic low-level exposure to SiNPs and presented novel evidence of the chronic pulmonary toxicity and carcinogenicity of SiNPs, from a metabolomic perspective.


Assuntos
Pulmão , Nanopartículas , Ratos , Humanos , Animais , Nanopartículas/química , Inflamação/metabolismo , Carcinogênese , Dióxido de Silício/química
18.
J Chromatogr A ; 1721: 464817, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38518515

RESUMO

We report on the possibility to extend to bi-continuous packings the two models for the effective longitudinal diffusion Deff, or B-term band broadening, recently proposed for discontinuous chromatographic beds. In bi-continuous packings, like monolithic columns, solutes experience a connected end-to-end pathway in both the mobile and stationary zones, as opposed to discontinuous packings, wherein the stationary adsorptive zone is distributed over a set of isolated elements. Since it is unclear whether a densely packed bed of spherical particles should be treated as a continuous or a bi-continuous medium, this extension is also crucial to fully understand the behaviour of packed particle beds. The proposed models for the effective longitudinal diffusion Deff originate from the adoption of the Two Zone Moment Analysis (TZMA) method by which Deff can be expressed as a linear combination of two essential quantities γm and γs, referred to as effective zone-diffusion factors. In the present work we propose two analytical models for γm and γs that now cover both the discontinuous and the bi-continuous case. To validate the theory, several bi-continuous packings are investigated, including the tetrahedral skeleton model (TSM), six different Triple Periodic Minimal Surface (TPMS) monoliths and randomly packed beds of spheres. For all of these, the models provide highly accurate results for Deff over a wide range of porosities and zone retention factors k″. The comparison with literature experimental data for both monolithic silica columns and columns packed with fully porous and porous-shell particles is also presented.


Assuntos
Dióxido de Silício , Cromatografia Líquida/métodos , Difusão , Porosidade , Adsorção , Dióxido de Silício/química
19.
Int J Pharm ; 655: 124024, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537920

RESUMO

Controlling the drug release and restricting its presence in healthy organs is extremely valuable. In this study, mesoporous silica nanoparticles (MSN) as the core, loaded with paclitaxel (PTX), were coated with a non-porous silica shell functionalized with disulfide bonds. The nanoparticles were further coated with polyethylene glycol (PEG) via disulfide linkages. We analyzed the physicochemical properties of nanoparticles, including hydrodynamic size via Dynamic Light Scattering (DLS), zeta potential, X-ray Diffraction (XRD) patterns, Fourier-Transform Infrared (FTIR) spectra, and imaging through Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The drug release profile in two distinct glutathione (GSH) concentrations of 2 µM and 10 µM was measured. The cellular uptake of nanoparticles by MCF-7 cell line was determined using Confocal Laser Scanning Microscopy (CLSM) images and flow cytometry. Furthermore, the cell viability and the capability of nanoparticles to induce apoptosis in MCF-7 cell line were studied using the MTT assay and flow cytometry, respectively. Our investigations revealed that the release of PTX from the drug delivery system was redox-responsive. Also, results indicated an elevated level of cellular uptake and efficient induction of apoptosis, underscoring the promising potential of this redox-responsive drug delivery system for breast cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polietilenoglicóis/química , Glutationa/química , Oxirredução , Dissulfetos , Portadores de Fármacos/química , Porosidade
20.
J Chromatogr A ; 1721: 464833, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38555828

RESUMO

A 3 µm undecylenic acid-functionalized stationary phase (UAS) was prepared for the separation of nucleosides and nucleobases using per aqueous liquid chromatography (PALC) and hydrophilic interaction liquid chromatography (HILIC). The retention behaviors of nucleosides and nucleobases in PALC and HILIC modes were explored by adjusting parameters such as water content, buffer concentration, pH of the mobile phase and column temperature. The experimental data and separation chromatogram demonstrated that PALC could provide retention comparable to that of HILIC for nucleosides and nucleobases. Comparative studies using diluted adenosine solutions evaluated theoretical plates and peak shape for the same retention factors (between 0.25 and 5.0) in PALC and HILIC. There was no buffer component in the mobile phases used to operate the comparisons. HILIC mode is more efficient for adenosine than PALC mode at low retention factors. It's the exact opposite phenomenon for high retention factors. It is proposed that the mass transfer of adenosine between the UAS, the water-rich layer and the ACN-rich mobile phase in HILIC is relatively slow. Given the significant use of toxic ACN in HILIC, PALC emerges as a safer and more effective alternative for separating nucleosides and nucleobases.


Assuntos
Nucleosídeos , Dióxido de Silício , Ácidos Undecilênicos , Dióxido de Silício/química , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Água/química , Indicadores e Reagentes , Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...